First measurement of $F_{+}^{4\pi}$ in $D \rightarrow 4\pi$ decays & A new method for measuring CPV in charm decays Sneha Malde University of Oxford Supported by UK-India Education and Research Initiative UK Science and Technology Facilities Council L'oreal-Unesco For Women In Science #### Outline - Previous talk discussed how the knowledge of F_+ allowed use of $\pi\pi\pi^0$ and $KK\pi^0$ as quasi-GLW states for determining CKM angle γ - Describe the measurement of F_+ for the decay $D \rightarrow 4\pi$, further increasing channels that can be sensitive to γ in this way - Describe how these measurements are useful for CPV in charm decays - Work based on - S. Malde et al arXiv:1504.05878 [hep-ex] - S. Malde, C. Thomas & G. Wilkinson arXiv: 1502.04560 ### $D \rightarrow 4\pi$ - Previous talk discussed the result for $D \rightarrow \pi \pi \pi^0$, $KK\pi^0$ - Another candidate is D \rightarrow 4 π - Self conjugate decay mode, relatively high branching fraction ~0.7 % - Fully pionic final state higher selection efficiency than other decay modes ### CLEO-c and quantum coherence - Hermitic detector based at CESR e⁺e⁻ collider - Operated at threshold energy - Study $\psi(3770) \rightarrow D^0 \overline{D^0}$ decays - Key: C= -1 for $\psi(3770)$ at threshold - Strong decay, C is conserved - Hence the decays of D^0 and $\overline{D^0}$ are quantum correlated i.e If one D meson decay is in a CP eigenstate the other D meson decays has opposite CP Sneha Malde 19th May 2015 ### Strengths of the CLEO-c detector - Very clean events - S/B ~ 10- 100 - K_L reconstruction possible through missing mass technique - CP eigenstates with K_L and $K_L \pi \pi$ tags are possible Excellent E-M and hadron calorimetry and PID ### Using CLEO-c data to measure F+ • Idea: Determine double tag yields where one D meson decays to 4π and the other to a CP eigenstate: $M(4\pi | CP_x)$ Fully reconstructed double tags only shown ### Using CLEO-c data to measure F+ - Idea : Determine double tag yields where one D meson decays to 4π and the other to a CP eigenstate : M(4π | CP_x) - For normalisation require knowledge of the single tag yield number of D→CP eigenstate decays in the dataset : S(CP_x) $$\frac{M(4\pi | CP_X)}{S(CP_X)} = \frac{2N_{D\bar{D}}B(4\pi)B(CP_X)\varepsilon(4\pi | CP_X)[1-\eta_X(2F_+^{4\pi}-1)]}{2N_{D\bar{D}}B(CP_X)\varepsilon(CP_X)} = N^{-\eta_X}$$ ### Using CLEO-c data to measure F+ - Idea : Determine double tag yields where one D meson decays to 4π and the other to a CP eigenstate : M(4π | CP_x) - For normalisation require knowledge of the single tag yield number of $D \rightarrow CP$ eigenstate decays in the dataset : $S(CP_x)$ $$\frac{M(4\pi \mid CP_X)}{S(CP_X)} = \frac{2N_{D\bar{D}}B(4\pi)B(CP_X)\varepsilon(4\pi \mid CP_X)[1-\eta_X(2F_+^{4\pi}-1)]}{2N_{D\bar{D}}B(CP_X)\varepsilon(CP_X)} = N^{-\eta_X}$$ Ratio removes dependence on overall normalisation, and the CP tag branching fraction and efficiency (assume the efficiency factorises) Sneha Malde 19th May 2015 ## Relation to $F_{+}^{4\pi}$ $$\frac{N^{+}}{N^{+} + N^{-}} = \frac{\mathbf{B}(4\pi)\varepsilon(4\pi)[1 - (2F_{+}^{4\pi} - 1)]}{\mathbf{B}(4\pi)\varepsilon(4\pi)[1 - (2F_{+}^{4\pi} - 1) + 1 + (2F_{+}^{4\pi} - 1)]}$$ $$\frac{N^{+}}{N^{+} + N^{-}} = F_{+}^{4\pi}$$ - Double ratio removes dependence on branching fraction and efficiency of the 4π decay - Clean measurement few external constraints, minimises systematic uncertainties ## Results of 4π vs CP odd tags - Good consistency between tags - Systematic uncertainties arise from single tag estimates, corrections for D mixing - Sufficiently small to not be visible by eye ### Results of 4π vs CP even tags - Good consistency between tags - Not possible to determine single tag yield for K₁ tags - Effective single tag yield is estimated from BF, and N_{DD} and efficiencies. - Large uncertainties on the BF and the efficiencies - Impact of K_Iω tag minimal - Similar uncertainties not present for $\pi\pi\pi^0$ KK π^0 since the yields were ~ 0 • $F_{+}^{4\pi} = 0.754 \pm 0.031 \pm 0.021$ #### Using other tags where the CP fraction is known - Can extend the method to use other tags e.g $\pi\pi\pi^0$ - Require knowledge of the $\pi\pi\pi^0$ CP fraction $$\frac{N^{\pi\pi\pi^{0}}}{N^{+}} = \frac{\left[1 - \left(2F_{+}^{4\pi} - 1\right)\left(2F_{+}^{\pi\pi\pi^{0}} - 1\right)\right]}{2F_{+}^{4\pi}}$$ $$F_{+}^{4\pi} = \frac{N^{+} F_{+}^{\pi\pi\pi^{0}}}{N^{\pi\pi\pi^{0}} - N^{+} + 2N^{+} F_{+}^{\pi\pi\pi^{0}}}$$ - Double tag yield 75.5±15.7 - $F_{+}^{4\pi} = 0.695 \pm 0.050 \pm 0.021$ # Utilising K⁰ππ tags • Further sensitivity can be gained by tagging 4π decays by particular regions of the $K^0\pi\pi$ Dalitz plot. For $K_S^0\pi\pi$: $$M_{|i|} = h \left[K_i + K_{-i} - \left(2F_+ - 1 \right) 2c_i \sqrt{K_i K_{-i}} \right]$$ - Similar expression for $K_1^0 \pi \pi$ - |i| is some region on the $K^0\pi\pi$ Dalitz plot - K_i is the fraction of the flavour tagged yield of the D^0 meson that falls into bin i - determined from BaBar model for $K_S\pi\pi$ and from CLEO data for $K_I\pi\pi$ - c_i is the average strong-phase difference over the region i - Measured at CLEO-c PRD 82 112006 # Utilising K⁰ππ tags • Integrated Data over the $K^0\pi\pi$ Dalitz plots • Peaking bkg mainly $K_S^0\pi\pi$ misidentified as 4π on the signal side • Peaking bkg mainly $K_S^0\pi\pi$ misidentified as $K_L^0\pi\pi$ on the tag side # Utilising K⁰ππ tags Binning in which the K_i and c_i numbers are known. ### Some plots - Yields are corrected for background and varying efficiency - Fit performed to the binned yields to determine F₊ - $F_{+}^{4\pi} = 0.737 \pm 0.049 \pm 0.024$ #### Combination | Tag | $F_+^{4\pi}$ | | | | |--------------------------|-----------------------------|--|--|--| | CP eigenstates | $0.754 \pm 0.031 \pm 0.021$ | | | | | $K_{ m S,L}^0\pi^+\pi^-$ | $0.737 \pm 0.049 \pm 0.024$ | | | | | $\pi^{+}\pi^{-}\pi^{0}$ | $0.695 \pm 0.050 \pm 0.021$ | | | | | Combined | 0.737 ± 0.028 | | | | - Value is quite high - Good decay to add to the quasi-GLW measurements to add to the CKM angle γ measurements - However there is another use too ### The power of D decays - In the Standard model indirect CP violation in charm decays is expected to be well below current level of precision than we can achieve - Many models of New Physics predict enhancements - Perfect place to search for New Physics effects. - Current measurement consistent with no CPV - Expanding the repertoire of measurements we can make is crucial to exploit all available data # A_{Γ} and y_{CP} - A_{Γ} is one of the leading CP violating observables - Measured from a difference in lifetimes of the decays of D⁰ and D⁰ to a CP eigenstate, e.g KK $$A_{\Gamma} = \frac{\hat{\Gamma}(D^{0} \to KK) - \hat{\Gamma}(\bar{D}^{0} \to KK)}{\hat{\Gamma}(D^{0} \to KK) + \hat{\Gamma}(\bar{D}^{0} \to KK)}$$ $$y_{CP} = \frac{\hat{\Gamma}(D^{0} \to KK) + \hat{\Gamma}(\bar{D}^{0} \to KK)}{2\Gamma} - 1$$ $$|D_{1,2}\rangle = p |D^{0}\rangle \pm q |\bar{D}^{0}\rangle$$ $$|p|^{2} + |q^{2}| = 1, r_{CP} \equiv \frac{q}{p} e^{i\phi_{CP}}$$ $$A_{\Gamma} pprox rac{1}{2}y\cos\phi_{CP}\left(r_{CP} - rac{1}{r_{CP}} ight) - rac{1}{2}x\sin\phi_{CP}\left(rac{1}{r_{CP}} + r_{CP} ight),$$ $y_{CP} pprox rac{1}{2}y\cos\phi_{CP}\left(rac{1}{r_{CP}} + r_{CP} ight) - rac{1}{2}x\sin\phi_{CP}\left(r_{CP} - rac{1}{r_{CP}} ight).$ Indirect CPV when $r_{CP} \neq 1$ and/or $\varphi_{CP} \neq 0$ x, y are the mixing parameters ## Limiting factor - Measurements rely on CP eigenstates -To date these have involved the following modes: KK, ππ, CP odd component of KsKK - Other CP eigenstates include K_L or other particles with low reconstruction efficiencies - BF of currently used modes are less 0.5% - What if useful information can be gained from CP conjugate states rather than requiring a CP eigenstate? ## Consider multibody decays Following the derivation in arXiv: 1502.04560 $$egin{aligned} A_{\Gamma}^{ ext{eff}} &pprox rac{1}{2}(2F_{+}-1)y\cos\phi_{CP}\left(r_{CP}- rac{1}{r_{CP}} ight) - \ & rac{1}{2}(2F_{+}-1)x\sin\phi_{CP}\left(r_{CP}+ rac{1}{r_{CP}} ight), \ y_{CP}^{ ext{eff}} &pprox rac{1}{2}(2F_{+}-1)y\cos\phi_{CP}\left(r_{CP}+ rac{1}{r_{CP}} ight) - \ & rac{1}{2}(2F_{+}-1)x\sin\phi_{CP}\left(r_{CP}- rac{1}{r_{CP}} ight). \end{aligned}$$ - $A_{\Gamma}^{\text{eff}} = A_{\Gamma}/(2F_{+}-1)$ - If $F_+ = 0$ or 1 then the expressions reduce to A_Γ and y_{CP} - If F₊ = 0.5, then there is no sensitivity to the parameters of interest - Extensions including direct CPV can also be taken into account : see arXiv:1502.04560 Sneha Malde 19th May 2015 ### Prospects - Derive relative sensitivity to KK mode for indirect CPV in D decays - Use relative BF, and F₊ values - Assume the selection efficiency is equal in all cases | | K^+K^- | $\pi^+\pi^-$ | $\pi^{+}\pi^{-}\pi^{0}$ | $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ | |---------------------------|----------|--------------|-------------------------|--------------------------------| | $BF \ [\times 10^{-2}]$ | 0.396 | 0.1402 | 1.43 | 0.742 | | F_{+} | 1 | 1 | 0.973 | 0.737 | | Uncertainty | 1 | 1.68 | 0.56 | 1.54 | - $\pi\pi\pi^0$ is very powerful due to high F_+ and high BF -- Reconstruction efficiency should be high at BELLE-II - 4π will provide valuable additional sensitivity, high reconstruction efficiency at LHCb ### Summary and Conclusion - High $F_{+}^{4\pi}$ value in $D \rightarrow 4\pi$ - Another mode to add to quasi-GLW for CKM angle γ measurements like $\pi\pi\pi^0$ and $KK\pi^0$ - All these D decay modes can also be used to improve D mixing and indirect CPV parameters by measuring A_{Γ}^{eff} and y_{CP}^{eff} . - Interpretation of the potential measurements in terms of direct and indirect CPV also possible - Look forward to the use of these modes to constrain r_{CP} and φ_{CP}